Universität Stuttgart (USTUTT)
The University of Stuttgart was founded in 1829, at the beginning of the industrial age in Europe, and celebrated its 175th anniversary in 2004. The cooperation between technical, physical and human sciences has always been an advantage of the University of Stuttgart. Today the university is a modern, achievement-orientated institution with a comprehensive range of subjects and a focus on technical and physical disciplines. The 130 mio. Euro annual third party funding shows that the university is a popular partner for European and German, federal and private organisations and the economy. 4,000 employees work in over 150 institutes, 10 faculties and in central institutions; this makes the University of Stuttgart one of the greatest employers of the region. Currently, 28,000 students are registered, 1,700 students graduate every year and start their careers. Additionally, about 150 trainees from many different branches train for their jobs here. They become mechanics, mathematic-technical assistant and many other trades - in the workshops and laboratories of the university.
The Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart, founded in 1986, is reputed as one of the leading laser research centers worldwide. Its strength is based on a holistic research approach covering every aspect from laser sources to their applications and ranging from fundamental investigations to industrial technology transfer. The main activities at the IFSW are currently concerned with selected topics in the fields of laser beam sources (especially the thin-disk laser), optical elements and components for beam delivery and beam shaping as well as fundamental investigations on the light-matter interaction with the subsequent process development of macro and micro applications for industrial manufacturing.
A significant core research area at the USTUTT is devoted to fundamental investigations on diode-pumped solid-state lasers (mainly thin-disk lasers). Current efforts concentrate on the reliable generation of radiation with high beam quality and the power scalability of lasers in all modes of operation (cw, Q-switched, mode locked) of oscillators as well as for amplifiers. Strongly related to the research on high-power lasers the USTUTT also develops novel optical elements for the polarisation and the spectral control (polarisation and wavelength selective devices as well as highly efficient pulse compressor gratings) of laser radiations. Within the core research area on laser-based Process Development the knowledge on fundamentals gained in the continuous research on the interaction between laser beams and matter is exploited for the development of novel laser-based manufacturing technologies.
Collaborators:
Marwan Abdou Ahmed